The term “metadata” refers to data that describes data, and it comes in quite handy when you’re training machine learning algorithms. Take for example a picture of a table with a plate of eggs, bacon, and toast along with a couple of hands holding utensils. We can easily label the individual objects – knife, fork, left hand, right hand, glass of orange juice, etc. – but we can also deduce more information from the more subtle details. The bright red nail polish, the wedding ring on one hand, smooth youthful skin, these signs could point to a younger married woman sitting down for breakfast.
A human might be able to arrive at this conclusion quite easily given the ability to connect the dots using context, but an AI algorithm will have a tougher time. However, if we label all those “clues,” then the machine learning algorithms can begin to learn how to interpret imagery in the same way humans can. One company that’s been printing cash lately by providing crowdsourced big data labeling services is a publicly traded Australian firm called Appen (APX). (Below numbers in USD unless otherwise noted.)
About Appen
Appen’s history extends back to 1996, but it was only in 2013 that they settled on the name Appen and then completed a successful IPO in January of 2015. Since then, Appen has worked to become a “global leader in the development of high quality, human annotated datasets for machin
Sign up to our newsletter to get more of our great research delivered straight to your inbox!
Nanalyze Weekly includes useful insights written by our team of underpaid MBAs, research on new disruptive technology stocks flying under the radar, and summaries of our recent research. Always 100% free.
Become a premium member and get access to hundreds of premium articles, reports and additional content.
Nanalyze Premium is your comprehensive guide to investing in disruptive technologies. Read by the top investment banks, management consultancies, VCs, and research houses. Trusted by over 100,000 institutional and retail investors. Covering disruptive technologies for over 18 years.